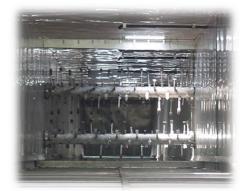
Next Generation Biodryer Biodryer Technology

Wright Environmental Group Canada Inc.
Domenic Di Gironimo, Business Development
+1.416.258.7770 / domenicdg@gmail.com

COVID-19 Update

Solutions for cleaner more sustainable communities

The Biodryer®


An efficient, sustainable solution to convert organic waste and biosolids into clean, renewable energy

- Tunnels designed to rapidly digest organic waste, then dry into a biofuel
- All organic waste is efficiently processed:
 - Biosolids & sludge from sewage
 - Food, wood, paper, cloths of natural fibers
 - Agricultural, Industrial, Marine, Medical
 - Tissue, sinew, bones, plant stocks

Disney, Florida USA

Whistler, B.C. Canada

- Environmentally safe, non-odorous, carbonneutral continuous processing without using any auxiliary fossil fuels
- Specially designed boiler burns the biofuel, feeding steam through turbine to generate reliable continuous electric power
- No noxious fumes with ability to recapture CO₂ to maximize greenhouse plant growth

All by-products are useful commodities with zero harmful or non-usable residues Clean water, steam, electric power, potash, CO₂

The Biodryer Solution

A revolutionary proven technology addressing all organic waste and biosolids issues

The Issues

- Biosolids, sewage, sludge and green-bin waste from urban centers are hauled over long distances, dumped into landfill sites, becoming an ever-growing part of municipal budgets
- Landfill leaching and gases threatening our water, soil and air
- Sewage, sludge and animal waste dumped on fields in rural areas increasing phosphorus levels and potential for water table contamination, including E-coli, viruses and un-digested antibiotics
- Fishery cleaning and canning waste polluting our shorelines
- Burning or burial of agricultural waste increasing harmful gases
- Stockpiles of wood waste reaching dangerous levels as fire and pollution hazards
- Under-performing municipal investments in anaerobic digesters, resulting in extremely inefficient
 power generation and digestates spread on fields rendering them unfit for farming for up to five years
- Backlog of development awaiting costly new sewage plants or upgrades
- Costly, intermittent wind and solar power solutions rife with other long-term issues
- Undigested viruses leached into our water systems and agricultural soils

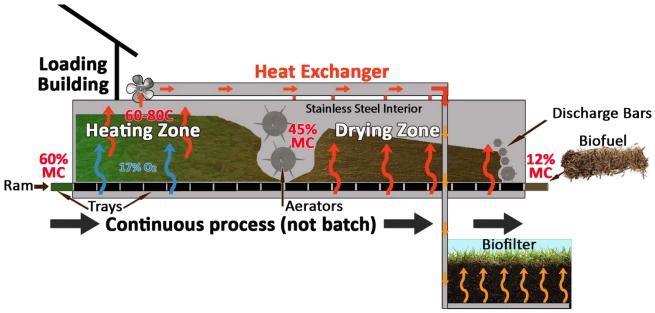
We can solve all of these issues and generate clean, reliable energy

The Biodryer® COVID-19 Solution

A final solution to address the serious issues surrounding the consequences of COVID-19 on our environment

The Issues

- Biosolids from sewage and sludge carry the COVID-19 Corona virus
- Current disposal methods dump biosolids into landfills, oceans or on to fields, where the Corona virus has yet to be proven that it is not 100% eradicated in the normal course of wastewater management
- The Corona virus, as do some bacteria, survive and leach into the water table and cycle into our potable and irrigation water systems
- Cross contamination is already occurring in other species, which may lead into our food supply carrying COVID-19 or a deadlier version
- An ever-growing volume of respiratory protection masks are collecting without a safe disposal plan because traditional dumping will only further contaminate the soil and burning will add significant harmful pollutants to our atmosphere
- Hospitals are accumulating medical organic waste laden with the Corona virus


What the Biodryer can do

- The Biodryer process completely destroys the COVID-19 Corona virus, whether from biosolids or medical organic waste as the biofuel produced is burned in the powerplant boiler at 1100 degrees
- Respiratory protection masks are shredded and destroyed in the Biodryer

We can solve all of these issues and generate clean, reliable energy

The Biodryer® Process

100 tons of daily organic waste produces 50 tons of Biofuel and 50 tons of clean water over a 7-day period

- External fans draw in air to optimize the activity of inherent microbes
- Microbes breakdown organic cellular walls to release trapped water, which causes an exothermic reaction producing a large amount of heat
- The heat evaporates the water and is recaptured as a clean condensate
- A heat exchanger extracts and blows hot air to the Drying Zone of the tunnel
- Aerators (spinners) mix the material that is moved along on trays each day
- The material is dried to a 12% Moisture Content to produce a highly calorific Biofuel
- Exhaust air is fed through a biofilter to remove any odours

Practical Uses

Crossing the entire spectrum of human life and our industriousness

Residential & Commercial Development or Infrastructure Renewal

- Fast track development of residential and commercial properties with an environmentally friendly carbon neutral waste solution that also provides power to the community.
- Accelerate municipal sewage solutions. No odours or leaching. No residual waste or toxic fumes.
- Less expensive than traditional waste and sewage solutions. Scalable to any size of development.
- Localized uninterrupted power generation, reducing transmission and distribution losses.
- Easy synchronization to Power Grid, can operate Power Plant in short durations for Peak loads.

Industrial & Construction

- Disposal of wood, cardboard, paper and other organic fibrous materials
- Co-firing for cement plants

Agricultural

- Disposal of plant stalks, animal fecal waste and rendering waste
- Fertilizer ash, CO₂ and clean water for irrigation are by-products of the Biodryer process

Airports, Cruise Ship Docks, Hospitals and Disposal of Virus Contaminations

- Each requiring on-site disposal of potentially hazardous organic waste
- Biodryer effectively handles all organic materials and natural fibres, including clothing & masks

Statistics

Unleashing the economic power of waste

Organic waste tons per day	50	100	150	300
Biofuel produced per day	25	50	75	150
Net exportable power	0.7 MWh	1.5 MWh	2.4 MWh	5 MWh

Capacities & Output

- A small tunnel can handle 50 tons of waste each day, while typical tunnel is designed for 100 tons
- Tunnels can be assembled in parallel without limit thus processing as much waste as necessary
- 100 tons of waste produces 50 tons of biofuel daily, which can generate up to 1.5 MWh of electrical power and 4 tons of fertilizer ash equivalent to potash

Size & Scalability

- Standard tunnel is 2.5m high x 3m wide and 100m long
- A typical 3-tunnel solution will require a loading building of 30m x 30m and total land area of 0.4 hectare (1-acre) including the tunnels
- Boilers vary more in height than in footprint depending on the power to be generated
- Biodryers can be situated in lesser urbanized area with lower land costs, while boilers can be separately located in the middle of urban centers to reduce transmission line loss

Operating & Maintenance

- Only 2 operators are required on a part-day basis
- The tunnels are stainless steel and expected to last 30+ years, only the aerator heads require replacement
- Typical boiler requires 3 days of service each month

Costs

• Cost will vary based on location, transportation, local manufacturing costs and size of solution, however as a rough approximation, a 3-tunnel solution with boiler producing 5 MWh the cost range is USD \$30 to \$40-million excluding land, building and site services

Comparisons

The Biodryer is the most complete & efficient treatment of waste

	Biodryer	Incineration	Anaerobic Digestion	Gasification
Waste Input (Feedstock)	All organic waste MSW residential, commercial, agricultural, industrial, invasive species	All MSW waste Including plastics, metals, etc	All Organic Waste	Organic Waste of max 25% moisture content
Wet Biosolids (Feedstock input)	Yes Receives wet biomass waste with no pre-drying required	No Requires pre-drying with auxiliary fuel	Yes	No Requires pre-drying with auxiliary fuel
Auxiliary Fuel Required	No	Yes Pre-drying of wet waste	Extensive external energy to heat tanks of waste	Extensive external energy to heat tanks of waste
Net Energy Production	Highest Does not require any power generated by the system	Lowest Requires power generated to perform incineration	Medium Scavenges power for digestion process	Low Scavenges power for digestion process
Power	Consistent	Variable	Variable	Variable
Human Health Concerns	None	High Release toxic metals, dioxins, acid gases, toxic ashes & residues	Medium Inert gas released. Resulting digestate difficult to dispose.	None
True Support 3-R's reduce, reuse, recycle	Yes	No	Yes	Yes
Environmental impact potential	Lowest	High	Medium	Low

More Comparisons

The Biodryer is the most economical Waste-to-Energy solution

	Biodryer	Incineration	Anaerobic	Gasification
			Digestion	
Siting of Facility	Can be in populated areas	Not in populated areas	Can be in populated	Can be in populated
T. 1. Cl.	V	According to WHO	areas	areas
Truly Clean, Green	Yes	No	No	Yes
Technology	Only output is biofuel and clean	Polluting airborne	Airborne pollutants and	5 5
	water; no odours	nanoparticles and toxic ash		way to dispose of waste
			digestate	with low energy
				production
Usable as Compost	Yes	No	No	No
•			No oxygen content thus	
			fertilized land unusable	
			for up to three years	
Scalable & Modular	Yes	No	Yes	Yes
	Low as 50 tons per day to an	Cannot operate with low	However remains costly	However remains very
	unlimited daily amount. Most cost	quantities of waste	due to lack of	costly due to lack of
	effective & real economies of scale.		economies of scale.	economies of scale.
Capital Costs	Lowest	High	High	High
	Per ton per kw	Require pollution control	Requires scrubbers	Requires scrubbers
	1	systems	1	1
O & M Yearly Costs	Lowest	High	Medium	Medium
Typical Return on	4 to 8 years	12 to 25 years	12 to 25 years	Negligible return
Investment (yearly)				
Stack requirement	No	Yes	Yes	No
1	Heat and CO2 may be redirected			
	for use in greenhouses			